When financial savings are critical to every institution, facility managers demand even more from their energy systems while looking to spend less. One way to achieve significant energy savings and healthy schools without making a substantial capital investment is through energy monitoring and chiller plant optimization.

The greatest energy savings available to school and university campuses can be generated from a facility’s existing chiller plant operation, where even small tweaks can result in significant improvements. Web-based monitoring systems can be an effective tool for analyzing large chiller plants and district cooling systems. Built on open standards, they offer networked solutions that collect and format data in real time and defined timeframe increments; monitor operations and equipment errors; and deliver oversight via Web-based alerts and alarms. Based on the information generated, engineers are able to track performance and remedy any malfunction in order to optimize energy efficiencies.

Critical Analysis

The monitoring process starts with an initial analysis of chiller plant operations. In most cases, industrial measurement devices are installed and existing equipment tested for accuracy. The data from the various systems are pulled together in one platform and routed to an automation system, then pushed to the Web every five minutes via ftp; most automation systems that are Web-based have the ability to do this very easily. Once accurate data are collected, an evaluation is done to understand how all the chiller components are working and determine the most efficient method of operating the plant.

By analyzing chiller operations, monitoring engineers are able to establish a matrix that selects the most efficient/cost-effective chiller configuration as a facility’s cooling load increases. Optimization steps might include redoing the sequencing of cooling towers, balancing the amount of energy consumed by different pieces of equipment, and enabling chilled water to be generated at the best efficiency and lowest cost. Facility managers can achieve cost savings by calibrating temperature sensors and the building automation system, eliminating inefficiencies in heat-exchanger performance, lowering condenser temperatures, and ensuring that flow through the plant and chillers meets the design tonnages recommended by equipment manufacturers.

Once the initial reconfigurations have been carried out, the Web interface enables continuous remote monitoring of a plant to maintain optimum operation. Monthly reports are submitted to the institution’s operating team to show actual savings from the enhanced operating strategies and to suggest additional system improvements.