Education institutions perpetually are challenged to deliver high-quality education with limited budgets. Part of an institution's success depends on finding creative solutions to reduce building operational costs and still provide an environment that promotes learning. With the recent spikes in energy costs and increased focus on environmental stewardship, maximizing energy performance has become a necessity when planning a new facility or improving an existing one.

Integrated design

Opportunities for affecting a facility's sustainability and energy efficiency start at the earliest conceptual stage with defined goals for performance. Educating administrators about integrated design and sustainability concepts results in informed decisions early in the design process. An integrated team of planners, architects and engineers can proactively consider energy performance as they develop a design.

Once energy consumption is optimized through design of the building envelope, the next step is to select highly efficient systems and materials that further reduce the building's carbon footprint. Energy modeling and life-cycle costing are essential in the design process to ensure the systems make fiscal sense.

Benchmarking tools such as Energy Star and ASHRAE 90.1 commonly are used to judge the energy performance of a building. Designs should strive to obtain an Energy Star rating and exceed 30 percent energy savings over the ASHRAE 90.1 baseline. In a recent study by the U.S. Green Building Council, sustainable schools used 33.4 percent less energy than comparable conventional schools, which saves an average of $47,880 annually in utility costs. Similarly, high-performing Energy Star schools have been shown to cost 40 cents less per square foot to operate.

Laying the groundwork

When analyzing a site and developing a design concept for a school, designers should consider the building's orientation and envelope. Each of these can affect energy consumption greatly. Thoughtful, creative site design that maximizes the landscape's potential provides opportunities to reduce energy use and site-development costs. Orienting the building to minimize southwest and southeast exposures reduces the cooling and heating load for building systems.

Several issues influence the sustainability of a site. These include limiting the development footprint and reducing the heat-island effect. Maintaining existing trees provides shading and protection from prevailing winds, and designing with the slope of the land protects portions of the building from the elements. Using highly reflective pavement, and distributed walkways and parking areas also help reduce heat absorption and the heat-island effect.